N*'s as determined from exclusive reactions

Volker D. Burkert

Outline:

- Goals of the N* Program
- Large Acceptance Detectors
- N* related data from JLab
- Status of the N* Analysis
- Upcoming experiments at Jlab @ 6 GeV
- Tools for more complex analyses
- Penta-Quarks and N*'s
- Conclusions

Goals of the N* Program

Two main motivations for the N* program:

- The study of the nucleon wave function though measurement of e.m. transition form factors for known resonances, e.g. $\Delta(1232)$, $P_{11}(1440)$, $S_{11}(1520)$, $D_{13}(1520)$, $F_{15}(1680)$, ... => analyze $N\pi$, $N\eta$, $(N\pi\pi)$ final states
- The study of the underlying symmetry properties through the search for SU(6)xO(3) symmetry predicted, yet undiscovered resonances ("missing resonance problem"), in measurements of $N\pi$, $N\pi\pi$, $K^+\Lambda$, $K^+\Sigma$, $p\omega$, $N\rho$, .. final states.

Large Acceptance Detectors for N* Physics.

CLAS: (photon and electron reactions)

- Measure many final states with mostly charged particles simultaneously.
- Operate with high luminosity electron beams, and with unpolarized and polarized energy-tagged bremsstrahlung photon beams.
- Coverage for photons limited to lab angles < 45°

Crystal Barrel-ELSA: (photon reactions)

• CsI with excellent photon detection, e.g. $N\pi^{o}\pi^{o}$, $N\pi^{o}\eta$

SAPHIR-ELSA (photon reactions, detector dismantled)

Charged particles in final state

GRAAL (photon reactions):

 BGO crystals, with excellent photon detection, limited charged particle, polarized laser-backscattered tagged photon

Crystal Ball – MAMI (photon reactions)

neutral final states in limited W range

BES (Beijing) – N^* in e^+e^- collisions.

LEPS – SPring-8 – (photon reactions)

• Charged particle detection in forward dipole spectrometer, and TPC with large angle coverage.

Experiment	Reaction	Physics	Data Status	Analysis Status	Publication Status
E89-037	$ep \longrightarrow ep\pi^o$	R_{EM}, R_{SM}	compl.	ongoing	PRL88, 122001 (2002)
	$ep \longrightarrow en\pi^+$	R_{EM} , R_{SM}	compl.	ongoing	in preparation
E89-038	$ep \longrightarrow en\pi^+$	γpN*	compl.	ongoing	in preparation
	eD → epπ ⁻	γnN^*	compl.		
E89-039	ep → epη	γNS_{11}	compl.	ongoing	PRL86, 1702 (2001)
E89-042	$\overrightarrow{ep} \longrightarrow ep\pi^{o}$	σ_{LT} , $N\Delta$	compl.	ongoing	PRC68, 032201 (2003)
	$ep \longrightarrow en\pi^+$	σ_{LT} , $N\Delta$	compl.	ongoing	in CLAS review
E01-102	$ep \longrightarrow ep\pi^o$	σ_{LT} , $NN*$	compl.	ongoing	
E01-103	$ep \longrightarrow en\pi^+$	σ_{LT} , $NN*$	compl.	ongoing	
E91-002	$ep \rightarrow ep\pi^o$	R_{EM} high Q^2	compl.	ongoing	in preparation
E99-107	$ep \rightarrow ep\pi^o$	R_{EM} high Q^2	compl.	ongoing	
E91-024	ep → epω	miss. N*	compl.	ongoing	
E93-006	$ep \longrightarrow ep\pi^+\pi^-$	miss. Res.	compl.	ongoing	PRL91, 022002 (2003)
E99-108	$\overrightarrow{e}p \longrightarrow ep\pi^+\pi^-$	miss. Res.	compl.	started	
E93-036	$\overrightarrow{ep} \rightarrow ep\pi^{o}$	A_{et}, A_{t}	compl.	ongoing	PRC68, 035202 (2003)
	$ep \rightarrow e\pi^+n$	A_{et}	compl.	compl.	PRL88, 82001 (2002)
E93-030	$ep \longrightarrow eK^+ \overrightarrow{\Lambda}$	N*, miss N*	compl.	ongoing	PRL90, 131804 (2203)
E94-005	$ep \longrightarrow ep\pi^+\pi^-$	Axial ff	compl.	ongoing	
E91-023	ep → eX	A_{et}	compl.	ongoing	PRL91, 222002 (2003)

Experiment	Reaction	Physics	Data Status	Analysis Status	Publication Status
E00-112 E91-011 E93-050	$ \stackrel{\stackrel{\bullet}{ep}}{\stackrel{\bullet}{ep}} \xrightarrow{eK^{+}\Lambda} \stackrel{\bullet}{ep} \xrightarrow{ep\pi^{0}} $ $ ep \xrightarrow{ep\pi^{0}} $	miss. N* R_{EM},R_{SM} N*	compl. compl.	ongoing ongoing compl.	PRL90, 131804 in preparation nucl-ex/0308009
E94-014	$ep \longrightarrow ep\pi^0$ $ep \longrightarrow ep\eta$	$N\Delta(1232)$ $S_{11}(1535)$	compl.	compl.	PRL82:45 (1999) PRD60:052004 (1999)

Experiment	Reaction	Physics Status	Data Status	Analysis Status	Publication
E89-004 E91-008 E93-033 E94-008 E94-103 E94-109 E99-013 E02-112 E03-105	$ \gamma p \rightarrow K^{+}Y $ $ \gamma p \rightarrow p \eta $ $ \gamma p \rightarrow p \pi^{+} \pi^{-} $ $ \gamma D \rightarrow \eta X $ $ \gamma p \rightarrow N \pi $ $ \gamma p \rightarrow p \rho^{\circ} $ $ \downarrow p \rightarrow p \omega $ $ \downarrow p \rightarrow K^{+}Y $ $ \uparrow p \rightarrow \pi N $	miss. N* S ₁₁ , P ₁₁ miss. N* N* N* miss. N* miss. N* miss. N*	compl. compl. compl. compl. compl. ongoing ongoing tbd tbd	ongoing compl. ongoing ongoing ongoing ongoing ongoing -	nucl-ex/0305028 PRL89, 222002 in prep

Penta-Quark Baryons and N* Physics

```
E03- \gammad K+K*p(n) 5-quark B5 sched. ongoing PRL91, 252001(2003) E05-xxx \gamma p \rightarrow K^+K^-\pi^+(n) 5-quark B5 sched. ongoing PRL92, 01 (2004) K^0nK^+
```

```
\gamma d \rightarrow K^+K^-p(n) 5-quark B5
                                                                  ongoing
                                                                             PRL91, 252001(2003)
E03-xxx
                                                      sched
                                                                  ongoing
                                                                             PRL92, 01 (2004)
                \gamma p \rightarrow K^+K^-\pi^+(n) 5-quark B5
                    → K^{o}nK^{+}, .. Excited \Theta^{+}
E04-xxx
                                                      sched.
                ed \pi^-\pi^-\pi^-p Search for X--
E04-xxx
                                                     tbd
E04-xxx
                       many \Theta^+, \Xi^{--}
                                                      tbd
                ep
```

Kinematics ep \rightarrow epX, E=4GeV

$N\Delta(1232)$ Transition

Data published after 1998

$N\Delta(1232)$ – current program

(data in hand, partially analyzed)

- $p\pi^0$ with high statistics are currently being analyzed covering $Q^2 = 0.1 6.0 \text{ GeV}^2$
- ep \rightarrow e π^+ n channel for $Q^2 = 0.1 6.0 \text{ GeV}^2$
- Data on σ_{LT} , for $p\pi^o$, $n\pi^+$ in $\Delta(1232)$ region at $Q^2 < 4$ GeV²
- Data on A_t , A_{et} for $p\pi^o$, $n\pi^+$, $p\pi^-$ at $Q^2 < 4$ GeV²
- Single and double polarization resp. functions at $Q^2 = 1 \text{ GeV}^2$
- Cross section for $p\pi^0$ at backward π^0 angles at $Q^2 = 1 \text{ GeV}^2$
- $p\pi^0$ with high statistics taken at $Q^2 = 6.0 \& 7.5 \text{ GeV}^2$

Response Functions from π^0 Electroproduction in the $\Delta(1232)$ Region

$$d\sigma/d\Omega = \sigma_T + \epsilon\sigma_L + \epsilon\sigma_{TT}\cos 2\phi + \sqrt{2\epsilon(\epsilon+1)}\sigma_{LT}\cos \phi; \qquad \sigma_i(\cos \theta^*, W)$$

N* program – $N\Delta(1232)$ transition

$N\Delta(1232)$ Transition

$$\sigma_T + \varepsilon \sigma_L = A_0 + A_1 P_1(\cos \theta) + A_2 P_2(\cos \theta) + A_3 P_3(\cos \theta) + A_4 P_4(\cos \theta)$$

CLAS preliminary

Polarization Observables

Response Functions – Hall A

CLAS $N\Delta(1232)$ – Asymmetries

A, 1.1<W<1.3 0.379<Q²<0.540 -180< ϕ <-144

$N\Delta(1232)$ Transition

• Published + publicly presented data.

$N\Delta(1232)$ Transition

• With current data from CLAS, Hall A & Hall C, JLab data on R_{EM} , R_{SM} , and G_M^D will cover the range $Q^2 = 0.1 - 7.5 \text{ GeV}^2$ with excellent statistics and low systematics.

Results projected from completed experiments.

- Hall A data include recoil and double polarization responses.
- CLAS data include $p\pi^0$, $n\pi^+$, beam asymmetries A_e , beam/target asymmetries A_t , A_{et}

Analysis Tools for Meson Production above the $\Delta(1232)$

- Unitary Isobar Model (JLab-Yerevan) for single π , η production
 - Born terms + ω , ρ exchange
 - Resonances as relativistic Breit-Wigner
 - Regge exchange at high W
- Fixed- t Dispersion Relations (JLab-Yerevan)
 - Imaginary part of amplitude as sum of Resonances
 - Real part by dispersion relations
 - High energy behavior by Regge parametrization
- Isobar Model for two-pion analysis (JLab-Moscow-Genova)
 - Non-resonant 3-body p.s., diffractive Np, $\Delta \pi$, D₁₃ π , Reggeon exchange at high W, s-channel Breit-Wigner resonances
- Event-based Partial-Wave Analysis with Maximum-Likelihood fits for $N\pi\pi$ final state (RPI-JLab)

Second Nucleon Resonance Region

Resonances: $P_{11}(1440)$, $S_{11}(1535)$, $D_{13}(1520)$

- Structure of the Roper P₁₁?
 - $|Q^3\rangle$ quark state?
 - $|Q^3G\rangle$ state?
 - $|N\sigma\rangle$ molecule?
 - $|Q^4\overline{Q}\rangle$ penta-quark?
 - quark core with meson cloud
- Structure of the $S_{11}(1535)$
 - hard transition form factor?
 - a 3-quark resonance?
 - a $\overline{K}\Sigma$ molecule?
- Q² evolution of the D₁₃ helicity structure, $A_{3/2} \rightarrow A_{1/2}$ dominance.

Second Nucleon Resonance Region

Single pion and eta production

1)
$$\overrightarrow{ep} \longrightarrow e(n\pi^+, p\pi^o)$$
, $Q^2 = 0.1 - 5.0 \text{ GeV}^2$ E89-038,42 E1-6
2) $\overrightarrow{ed} \longrightarrow ep\pi^-(p)$ $Q^2 = 0.1 - 3.5 \text{ GeV}^2$ E89-038/42
3) $\overrightarrow{ep} \longrightarrow ep\eta$ $Q^2 = 0.1 - 5.0 \text{ GeV}^2$ E89-039
4) $\overrightarrow{ep} \longrightarrow ep\pi^o$ $Q^2 = 0.1 - 3.5 \text{ GeV}^2$ E93-036
5) $\overrightarrow{ep} \longrightarrow e\pi^+ n$ $Q^2 = 0.1 - 3.5 \text{ GeV}^2$ E93-036

- Global analysis using DR (JLab-Yerevan) and
 UIM (JLab-Yerevan) fits performed for 1) 3) at low Q².
- First analysis of a consistent set of π^0 , π^+ , η cross sections and polarized beam structure functions.

The 2nd Resonance Region

CLAS ep \longrightarrow en π^+ Unitary Isobar fit

Fit to π , η Electroproduction

$\sigma_T + \epsilon \sigma_L$, σ_{TT} , σ_{LT}

Fit to π , η Electroproduction

Global Fit to n Photoproduction

Global Fit to η Photoproduction Target asymmetry

Global Fit to n Photoproduction

First Results from JLab Global Analysis

Large longitudinal coupling!

First Results from JLab Global Analysis

First Results from JLab Global Analysis – cont'd

First Results from JLab Global Analysis – cont'd

Third Nucleon Resonance Region

- Resonances: $S_{31}(1620)$, $S_{11}(1650)$, $D_{13}(1700)$, $D_{15}(1675)$, $F_{15}(1680)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{33}(1700)$,
- Transition form factors in a large Q² range
 - test of the Single Quark Transition Model (SQTM) for $\gamma + [56,0^+] \longrightarrow [70,1^-]$, and $\gamma + [56,0^+] \longrightarrow [56,2^+]$ transitions
- Does the $P_{11}(1710)$ have a 5-quark component as required by the chiral soliton model of Diakonov et al.? χ SM predicted the $\Theta^+(1540)$ as a 5-quark state.
- Main tools to study transitions in 3rd resonance region
 - $-\gamma^*N \longrightarrow N\pi$
 - $-\gamma^*N \longrightarrow N\pi\pi$, many states couple strongly to $N\pi\pi$

Test of the Single Quark Transition Model

Test of the Single Quark Transition Model

Tools to search for "Missing" Resonances

- Search for new baryon states (N^*, Δ) in $N\pi\pi$
 - Developed Isobar Model for the analysis of $p\pi^+\pi^-$ photoand electro-production data (Moscow-JLab-Genova).
 - Developing IM including neutral channel, e.g. $n\pi^+\pi^o$, $p\pi^o\pi^o$.
 - Developed event-based PWA approach for the analysis of $p\pi^+\pi^-$ photo-production data.
- Search for new baryon states (N^*, Δ) in **KY**.
 - Appropriate tools for resonance analysis are currently lacking. Coupled-channel analysis essential because of large background.
- Search for new baryon states (N^*) in $p\omega$.
 - Dynamical Model developed by Y. Oh. We are adopting this model to fit experimental data in single channel analysis. Need to include other channels because of background.

Partial Wave Formalism for $\gamma p \rightarrow p \pi^+ \pi^-$

Transition matrix:

$$\begin{split} T_{\mathrm{fi}} & = <\!\!p\pi^{+}\pi^{-}; \tau_{\mathrm{f}} | T | \gamma p; E > \\ & = \sum_{\alpha} <\!\!p\pi^{+}\pi^{-}; \tau_{\mathrm{f}} | \alpha > <\!\!\alpha | T | \gamma p; E > \\ & = \sum_{\alpha} \psi^{\alpha}(\tau_{\mathrm{f}}) V^{\alpha}(E) \end{split}$$

• Decay amplitude $\psi^{\alpha}(\tau_f)$ calculated using isobar model:

e.g.
$$J^{P}$$
, $M = \frac{1}{2}^{+}$, $+\frac{1}{2}$ $\longrightarrow [\Delta^{++}\pi^{-}]_{l=1}$, $\lambda_{Pf} = +\frac{1}{2}$

Production amplitude $V^{\alpha}(E)$ is fitted in unbinned maximum likelihood procedure. Assume $V^{\alpha}(E)$ is independent of E in small energy range.

Waves in the current analysis

J^{P}	M	Isobars
1/2+	1/2	$\Delta\pi~(=\{\Delta^{++}\pi^-,\Delta^{\mathrm{o}}\pi^+\})$
1/2-	1/2	$\Delta\pi$, $(p\rho)_{(s=1/2)}$
3/2+	1/2, 3/2	$(\Delta\pi)_{(l=1)}$, $(p\rho)_{(s=1/2)}$, $(p\rho)_{(s=3/2;l=1,3)}$, $N*(1440)\pi$
3/2-	1/2, 3/2	$(\Delta\pi)_{(l=0,2)}$
5/2+	1/2, 3/2	$(\Delta\pi)_{(l=1)}, p\sigma$
5/2-	1/2, 3/2	$\left(\Delta\pi ight)_{(l=2)}$

- Total of 35 waves (complex amplitudes)
- Diffractive production ("t-channel") also included

Samples of event-based PWA for $\gamma p \rightarrow p\pi^+\pi^-$

Isobar Model for the $\gamma^*N \longrightarrow N\pi\pi$ channel

- All established resonances included as Breit-Wigners
- Non-resonant Born terms for all $\Delta(1232)\pi$ isospin channels, and for $D_{13}(1520)\pi$ channels.
- Non-resonant pρ^o production through diffractive ansatz.
- High mass behavior through Reggeon exchange.
- Good fits to one-dimensional cross sections at low $p\pi^+\pi^-$ masses.

Isobar Model for the $\gamma^*N \longrightarrow N\pi\pi$ channel

Isobar Model for the $\gamma^*N \longrightarrow N\pi\pi$ channel

Resonances in $\gamma^* p \longrightarrow p \pi^+ \pi^-$

Isobar fit to $D_{13}(1700)$ and new P_{I3}

Isobar fit - A new P₁₃ state?

Strangeness Photoproduction

Strangeness Photoproduction

- Sample of data covering the full kinematic range in energy and angles for $K^+\Lambda$ and $K^+\Sigma$, including recoil polarization
- □ Data indicate significant resonance contributions, interfering with each other and with non-resonant amplitudes.
- Extraction of resonance parameters requires a large effort in partial wave analysis and reaction theory.

Strangeness in electroproduction

CLAS ep \longrightarrow eK⁺Y response functions

Strangeness in electroproduction

CLAS

$$\gamma * p \longrightarrow K^+ \Lambda$$

forward hemisphere

$0. < Cos(\Theta_K) < 1., Q^2 = 0.7 (GeV/c)^2$ 0.3 $\sigma_{\scriptscriptstyle T} + \in_{\scriptscriptstyle L} \sigma_{\scriptscriptstyle L}$ 0.2 0.1 1.7 1.6 1.8 1.9 2 2.1 W (GeV)

backward hemishere

CLAS - Resonances in $\gamma p \rightarrow p\omega$?

PRELIMINARY

Model: Y. Oh

OPE + Pomeron

— N* Capstick model

— Sum

ω – electroproduction

Penta-Quark Baryons

- They are part of the baryon spectrum
- Some (most?) will mix with ordinary baryons, so they have to be analyzed together with the other excited states.
- They may be produced via the decay of excited N*'s.
- They will help us to understand the symmetries underlying the baryon spectrum
- They provide fundamentally new insight into how QCD works in the complex regime where the interaction is strong

CLAS - ⊕⁺ Production on Protons

Combined analysis of all CLAS data on protons with > 5 GeV beam energy; minimal cuts - forward π +, backward K⁺.

V. Kubarovsky, et al.; PRL submitted

NA49 Experiment – Θ^+

Figure 2: Invariant mass distribution of pK_S^0 pairs in the presence of a K^-

 $M(p,K^0,K^-)$, if 1.525 $M(p,K^0)$ <1.545 GeV

Conclusions

What is needed for a full success of the N* program?

- More data on polarization observables
 - linearly polarized photons
 - transverse/longitudinally polarized hydrogen and deuterium targets
- Full coupled channel analysis including all final states, in all isospin channels
- Excited Baryon Analysis Center